On the modeling of wave–current interaction using the elliptic mild-slope wave equation

نویسندگان

  • Wei Chen
  • Vijay Panchang
  • Zeki Demirbilek
چکیده

Methods to incorporate the effect of ambient currents in the prediction of nearshore wave transformation are developed. This is accomplished through the construction of a finite-element coastal/harbor wave model based on an extended mild-slope wave–current equation that includes wave breaking. Improved boundary conditions are used to provide more accurate forcing and to minimize spurious wave reflections from the boundaries. Multiple nonlinear mechanisms, appearing both in the governing equations and in the boundaryconditions, arehandled successfully and efficiently with iterative techniques. The methods are tested against results from other types of models based on parabolic approximationsor Boussinesqequations for threewave–currentproblems of common interestand varying complexity. While indicating good agreement in general, the analysis also highlights the limitations of parabolic approximation models in case of strong local currents and velocity shear. We also consider the harbor engineering problem pertaining to waves approaching an inlet with a jettied entrance,wherewave– current interaction can create a complex wave pattern that adversely affects small craft navigation and causes scouring. The role of ebb and flood currents on wave transformation and on breaking in the vicinity of the inlet is investigated using the model in conjunction with hydraulic laboratory data. It is found that although the ebb currents cause larger waves outside the inlet, much of the wave energy is soon dissipated due to breaking; during the flood tide, in contrast, more wave energy can penetrate into the inlet throat. q 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D NUMERICAL MODELING OF WAVE TRANSFORMATION ON SOFT MUDDY BEDS

The present paper offers a numerical model which can be applied for the simulation of wave height distribution on a 2-D horizontal soft mud layer. The model is based on mild slope equations and it includes combined wave refraction, diffraction, reflection and breaking. The high energy dissipation of wave height due to the presence of fluid mud layer has also been simulated. Wave height attenuat...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

NUMERICAL MODELING OF DIFFRACTION THROUGH A BREAKWATER GAP

Wave diffraction is a very important phenomenon in marine engineering and several models have been developed for its simulation. The new version of SWAN, a third generation spectral model, includes an approximation to wave diffraction. The approximation is based on the mild-slope equation for refraction and diffraction, omitting phase information. The objective this paper is to evaluate the per...

متن کامل

Numerical Modeling of Extended Mild Slope Equation with Modified Mac Cormack Method

The transformation of waves is one of the important subjects in coastal engineering studies. Refraction, diffraction, shoaling, reflection can be analysed with the mild slope equation over mild sloped topographies. But the extended mild slope equation can be applied to the rapidly varying topographies since it includes higher order bottom effects such as square of bottom slope and bottom curvat...

متن کامل

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005